Parametrized Accelerated Methods Free of Condition Number

نویسندگان

  • Chaoyue Liu
  • Mikhail Belkin
چکیده

Analyses of accelerated (momentum-based) gradient descent usually assume bounded condition number to obtain exponential convergence rates. However, in many real problems, e.g., kernel methods or deep neural networks, the condition number, even locally, can be unbounded, unknown or mis-estimated. This poses problems in both implementing and analyzing accelerated algorithms. In this paper, we address this issue by proposing parametrized accelerated methods by considering the condition number as a free parameter. We provide spectral-level analysis for several important accelerated algorithms, obtain explicit expressions and improve worst case convergence rates. Moreover, we show that those algorithm converge exponentially even when the condition number is unknown or mis-estimated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD ‎r‎otating heat and mass transfer free convective flow past an exponentially accelerated isothermal plate with fluctuating mass ‎diffusion

In this paper, we have considered the problem of rotating, magnetohydrodynamic heat and mass transfer by free convective flow past an exponentially accelerated isothermal vertical plate in the presence of variable mass diffusion. While the temperature of the plate is constant, the concentration at the plate is considered to be a linear function with respect to time t. The plate is assumed to be...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem

In this paper, we present a class of parametrized limiters used to achieve strict maximum principle for high order numerical schemes applied to hyperbolic conservation laws computation. By decoupling a sequence of parameters embedded in a group of explicit inequalities, the numerical fluxes are locally redefined in consistent and conservative formulation. We will show that the global maximum pr...

متن کامل

Application of the Weibull Accelerated Failure Time Model in the Determination of Disease-Free Survival Rate of Patients with Breast Cancer

Background and Purpose: The goal of this study is application of the proportional hazards model (PH) and accelerated failure time model (AFT), with consideration Weibull distribution, to determine the level of effectiveness of the factors affecting on the level of disease-free survival (DFS) of the patients with breast cancer. Materials and Methods: Based on the retrospective descriptive stu...

متن کامل

A Petrov-Galerkin reduced basis approximation of the Stokes equation in parametrized geometries

We present a Petrov-Galerkin reduced basis (RB) approximation for the parametrized Stokes equation. Our method, which relies on a fixed solution space and a parameter-dependent test space, is shown to be stable (in the sense of Babuška) and algebraically stable (a bound on the condition number of the online system can be established). Compared to other stable RB methods that can also be shown t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.10235  شماره 

صفحات  -

تاریخ انتشار 2018